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Outline

• Review last class
• Pivoting strategies to reduce round-off 

error in solutions
• Gauss-Jordan for matrix inverses
• The LU method
• Numerical analysis software
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Review last class

• Finite representation of numbers in 
binary computer gives round-off error

• Machine epsilon is measure of precision 
of floating point representation
– 1 +  = 1 below “machine epsilon”

– epsilon is usually 1.19x10-7 for single and 
2.22x10-16 for double precision

• Round-off error growth in calculations 
called error propagation
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Review Error Propagation

• Addition and subtraction errors
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Review Matrix Vector Norm

• Both Ax and x are matrices

• Can use any matrix norm to 
compute ||A|| 
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• Choosing infinity 
norm as vector norm 
gives row sum

• Choosing one norm 
as vector norm gives 
column sum
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Review Problem Condition
• In ill-conditioned problems small relative 

changes in data cause large relative 
changes in results

• Matrix condition number (A) = ||A|| ||A-1|| 
of 100 or above indicate ill-conditioning
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Review Gauss Elimination

• Use each row from row 1 to row n-1 as 
the “pivot” row
– Work on each row below the pivot row

• Multiply pivot row by arow,pivot/apivot,pivot

• Subtract result from row r to make arow,pivot = 0
• Operation requires subtraction for each column of 

A right of pivot column and for b

– Repeat for each row below pivot

• Repeat for rows 1 to n-1 as pivot rows
• Use back substitution for x values
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Review Round-off Error Example

• Same set of equations solved with 
original order and reverse order



















































0002.1

1

300003.0

11

1

0002.1

11

300003.0

x

y

y

x























































 9999.0

1

9997.20

11

0003.0

0002.1
1

0002.1

99990

300003.0

x

y

y

x

• Original order solution less accurate by 
about four significant figures
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Review Round-off Conclusions

• Showed that order of equations was 
important factor in round-off error

• Problems caused by small pivot 
elements (diagonal element on 
pivot row)

• Found large loss of significant 
figures with original order but no 
error when order was reversed

• Want to use this idea in algorithms 
for reducing round-off error
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Zero and Small Pivots

• Gauss elimination may give zero for the 
pivot element in one row, but swapping 
equations can give a nonzero pivot

• Always check for a small number not zero

• Use scaled equations so maximum 
absolute element in each row is one

• Find row with maximum (scaled) element 
in the pivot column and then swap
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Finding Inverse Matrices

• For B = A-1, AB = I, gives
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• This requires n solutions of n equations in 
n unknowns (one solution for each b 
column) 
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Finding Inverse Matrices II

• E. g., for the second column of B we solve
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• We can solve for all n columns of the 
inverse matrix at one time
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Finding Inverse Matrices III

• Gauss-Jordan subtracts pivot row from all 
rows above and below to give final result 
shown below
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Gauss-Jordan Matrix Inversion

• Start with augmented A matrix
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• Gauss elimination with diagonals set to 1 
and pivot row subtracted from all rows 
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Gauss-Jordan Result

• Augmented matrix at end of process
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hand) part of matrix 
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Gauss-Jordan Pseudocode

Loop over all rows as pivots (1 to N)

Find the row with the maximum 
(scaled) element in the pivot  
column and swap it with the pivot 
current pivot row

Divide all elements the pivot row      
by a[pivot,pivot]

Loop over all rows, subtracting the 
pivot row times a[row,pivot] from 
each row (1 to N except pivot)
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Gauss-Jordan Example
• Solve the set 

of equations 
on the right
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• Divide 
equation (i) 
by a11 = 2
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• Subtract –3 times (i) from equation (ii) and 
7 times (i) from (iii) to replace (ii) and (iii)
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Gauss-Jordan Example II

           )17(313)13(39)2(32133 321  xxx

           )17(714)13(78)2(73177 321  xxx

• Result from 
first set of 
operations )(13399170
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• Divide 
equation (ii) 
by a22 = -4 )(13399170

)(5.95.710
)(171321
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Gauss-Jordan Example III

           )5.9(217)5.7(213)1(22021 321  xxx

           )5.9(17133)5.7(1799)1(17171170 321  xxx

• Result from 
second set of 
operations

)(5.285.2800

)(5.95.710
)(2201
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



• Subtract –2 times (ii) from equation (i) and 
17 times (ii) from (iii) to replace (i) and (iii)
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Gauss-Jordan Example IV

           )1(22)0(22)0(20021 321  xxx

           )1(5.75.9)1(5.75.7)0(5.7105.70 321  xxx

• Divide 
equation (iii) 
by a33 = -28.5 )(1100
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)(2201
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
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• Subtract 2 times (iii) from equation (i) and 
7.5 times (iii) from (ii) to replace (i) and (ii)
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Gauss-Jordan Example V

• Results after 
using row iii 
as pivot row )(1100

)(2010
)(0001
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

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• Solutions are seen to be x1 = 0, x2 = 2, 
and x3 = 1

• No back substitution required

• Not generally used because more compu-
tations required (compared to standard 
Gauss elimination)
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Gauss-Jordan Inverse Example

• Use previous matrix to get inverse

 
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• After first 

row as 
pivot row
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Gauss-Jordan Inverse Example II


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
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125.4875.25.2800

025.0375.05.710

05.025.0201• After sec-
ond row as 
pivot row
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

0350877.0149123.0100877.0100

263168.0868421.0381579.0010

0701754.0201754.00482456.0001

• Final step (row 3 as pivot) shows [I,A-1]
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LU Methods

• Based on factoring original A matrix into 
a product LU = A

• L is lower triangular
• U is upper triangular
• Different ways to do this (Doolittle, 

Crout and Cholesky)
• Can get L and U without knowing b
• Useful when several b solutions (for 

same A) required at different times
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Crout Algorithm

• The L and U elements are stored in the 
space used for the A elements
– In Crout algorithm, the lower triangular 

matrix, L, has values of 1 on the principal 
diagonal which does not have to be stored

– All upper triangular matrix elements, uij, 
including diagonal elements are stored in 
place of the upper a elements

– This storage pattern for the L and U
matrices is shown on the next slide
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How do we get L and U?

• Conventional matrix 
multiplication
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• L and U structure give effective upper 
limits less than n

jjnjjj

n

k
jkjkj uuuuuulula 1132

1
11111 )1()0()0()0( 





11113
1

211111 )0()0()0( ullllulula iii

n

k
iikiki  




• These two equations give u1j = a1j and 
li1 = ai1/u11 (first u row and l column)
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General L and U Equations

• Use the following equations to compute 
components of L and U matrices (lmm = 1)
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Solving Ax = b

• Define y such that y = Ux

• b = Ax = LUx = Ly = b

• So we have to solve the following for y











































































nnnnn b

b

b

b

y

y

y

y

lll

ll

l





















3

2

1

3

2

1

321

3231

21

1

01

001

0001

30

Solving Ax = b Continued

• We find y from y = Ux (Ly = b)

• y1 = b1, y2 = b2 – l21y1, etc.

niylby
i

k
kikii ,2,1

1

1

 




• Solution for yi requires only yk with k < i

• Once y is known, we have to solve y = 
Ux for x 
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Solving Ax = b Concluded

• Solving y = Ux is just back substitution
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LU with Pivoting

• Can do usual pivoting in LU method by 
selecting maximum umm for division

• How do we consider row swaps when 
we have a new b vector?

• Maintain one-dimension integer array to 
keep track of row swaps

• See notes for details

• Library programs call for this array

Tridiagonal Systems

• Such systems have the following 
general form: Aixi-1 + Bixi + Cixi+1 = Di

• Occur in special cases such as ordinary 
differential equation boundary value 
problems and fitting cubic spline 
polynomials

• Simplified solution procedure, Thomas 
Algorithm, which is really Gaussian 
Elimination for this simple system

33

Thomas Algorithm*
• Loop over all rows from k = 1 to k = N-2; 

for each k value compute Bk+1 and Dk+1

• Compute 

• Loop over all rows from k = N – 1 to k = 
2 in reverse order.  For each row, k, 
compute xk from the following equation 

34
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
*Also called 

TriDiagonal Matrix 
Algorithm (TDMA)

Iterative Methods

• Used for large sparse systems of 
simultaneous linear equations
– May have thousands of equations, but any 

one equation will have only a few (five to 
seven) nonzero coefficients

– Such systems are associated with 
numerical solution of partial differential 
equations

– Covered in ME 501B numerical solution of 
partial differential equations discussion
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QR Method

• Based on the idea of transforming the A
matrix of Ax = b into A = QR, where
– Q is an orthogonal matrix (Q-1 = QT), and

– R is an upper triangular matrix

• Then have A-1 = (QR)-1 = R-1Q-1 = R-1QT

– b = A-1x = R-1QTx where premultiplication
by R-1 is simple because R upper triangular

• Formation of orthogonal Q known as 
modified Gram-Schmidt process

36
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Singular Value Decomposition

• Based on the idea of transforming the A
matrix of Ax = b into A = USVT, where
– U and V are orthogonal matrices (U-1 = UT

and V-1 = VT) and S is a diagonal matrix

• Singular value decomposition (SVD) 
and the QR Method are also used in 
solving least squares problems where 
an experimental data are used to get 
the best fit to a theoretical model
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Software

• Excel has array functions minverse, 
mmult, and mdeterm

• Matlab has many functions for matrices, 
including eigenvectors and eigenvalues

• Linear Algebra PACKage (LAPACK) is 
available on many computers

• Visual numerics (IMSL library)

• http:/gams.nist.gov/

39

Software Issues

• What do you want to do?
– Solve a problem

– Develop a general method

• To solve one problem (even several 
times) use Excel or Matlab

• To develop a general method get 
libraries from LAPACK, GAMS, or IMSL 
(Visual Numerics)
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Conclusions

• Solving problems in linear algebra has a 
strong background and literature

• Much available software
• Be sure that you have sufficient precision 

to avoid round-off error and use pivoting
• Check matrix condition number if you 

suspect near linear dependence
• Matlab is versatile tool for matrix 

equations, eigenvalues and eigenvectors


