Numerical Methods in Linear Algebra Part Two

Numerical Methods in Linear Algebra, Part Two

> Larry Caretto Mechanical Engineering 501A Seminar in Engineering Analysis September 25, 2017

California State University Northridge

1

0.9999

8

9

Review Round-off Conclusions

- Showed that order of equations was important factor in round-off error
- · Problems caused by small pivot elements (diagonal element on pivot row)
- · Found large loss of significant figures with original order but no error when order was reversed
- · Want to use this idea in algorithms for reducing round-off error Northridge

Gauss-Jordan Result												
 Augmented matrix at end of process 												
	[1	0	0			$0 b_{11}$	b_{12}	b_{13}			b_{1n}	
	0	1	0			$0 b_{21}$	b_{22}	b_{23}			b_{2n}	
	0	0	1			$0 b_{31}$	b_{32}	b_{33}			b_{3n}	
	1:	÷	÷	·.		: :	÷	÷	·.		:	
	1:	÷	÷		·.	÷ ÷	÷	÷		·.	:	
 Inverse is read from augmented (right-hand) part of matrix 												
California State University Northridge									15			

Gauss-Jordan Example III

Subtract -2 times (ii) from equation (i) and 17 times (ii) from (iii) to replace (i) and (iii)
 [1-(-2)0]x₁+[-2-(-2)(1)]x₂+[13-(-2)(7.5)]x₃ = [-17-(-2)(9.5)]

 $[0 - (17)I]x_1 + [17 - (17)(1)]x_2 + [99 - (17)(7.5)]x_3 = [133 - (17)(9.5)]$

• Result from $1x_1 + 0x_2 + 2x_3 = 2$ (*i*) second set of $0x_1 + 1x_2 + 7.5x_3 = 9.5$ (*ii*) $0x_1 + 0x_2 - 28.5x_3 = -28.5$ (*iii*)

19

21

California State University Northridge

Northridge

Gauss-Jordan Example V						
 Results after using row iii as pivot row 	$1x_{1} + 0x_{2} + 0x_{3} = 0 (i)$ $0x_{1} + 1x_{2} + 0x_{3} = 2 (ii)$ $0x_{1} + 0x_{2} + 1x_{3} = 1 (iii)$					
 Solutions are se and x₃ = 1 	en to be $x_1 = 0, x_2 = 2,$					
 No back substitution required 						
 Not generally us tations required Gauss elimination 	ed because more compu- (compared to standard on)					

Gauss-Jordan Inverse Example								
Use previous matrix to get inverse								
$\left[\mathbf{A},\mathbf{I}\right] = \begin{bmatrix} 2\\ -3\\ 7 \end{bmatrix}$	$\begin{bmatrix} -4 & -26 & 1 & 0 & 0 \\ 2 & 9 & 0 & 1 & 0 \\ 3 & 8 & 0 & 0 & 1 \end{bmatrix}$							
 After first row as pivot row 	$\begin{bmatrix} 1 & -2 & -13 & 0.5 \\ 0 & -4 & -30 & 1.5 \\ 0 & 17 & 99 & -3.5 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$						
Galifornia State University Northridge		22						

Gauss-Jordan Inverse Example II									
 After sec- ond row as pivot row 	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 & - \end{bmatrix}$	2 7.5 - 28.5	-0.25 -0.375 2.875	-0.5 -0.25 4.25	0 0 1				
• Final step (row 3 as pivot) shows [I,A ⁻¹]									
$\begin{bmatrix} 1 & 0 & 0 & -0.0 \end{bmatrix}$)482456	-0.20)1754	0.070175	54]				
0 1 0 0.3	81579	0.86	8421	0.26316	8				
$\begin{bmatrix} 0 & 0 & 1 & -0. \end{bmatrix}$	100877	-0.14	49123 -	-0.03508	77]				
California State University 23									

Tridiagonal Systems

- Such systems have the following general form: A_ix_{i-1} + B_ix_i + C_ix_{i+1} = D_i
- Occur in special cases such as ordinary differential equation boundary value problems and fitting cubic spline polynomials
- Simplified solution procedure, Thomas Algorithm, which is really Gaussian Elimination for this simple system

Thomas Algorithm*

- Loop over all rows from k = 1 to k = N-2; for each k value compute B_{k+1} and D_{k+1} $B_{k+1} \leftarrow B_{k+1} - A_{k+1}C_k/B_k$ $D_{k+1} \leftarrow D_{k+1} - A_{k+1}D_k/B_k$
- Compute $x_N = D_N / B_N$
- Loop over all rows from k = N 1 to k = 2 in reverse order. For each row, k, compute x_k from the following equation

$$x_k = \frac{D_k - C_k x_{k+1}}{B_k}$$

*Also called TriDiagonal Matrix Algorithm (TDMA)

California State University Northridge

Iterative Methods

- Used for large sparse systems of simultaneous linear equations
 - May have thousands of equations, but any one equation will have only a few (five to seven) nonzero coefficients
 - Such systems are associated with numerical solution of partial differential equations
- Covered in ME 501B numerical solution of partial differential equations discussion
 Conferma Sate University
 Souther Sate University

QR Method Based on the idea of transforming the A matrix of Ax = b into A = QR, where Q is an orthogonal matrix (Q⁻¹ = Q^T), and R is an upper triangular matrix Then have A⁻¹ = (QR)⁻¹ = R⁻¹Q⁻¹ = R⁻¹Q^T b = A⁻¹x = R⁻¹Q^Tx where premultiplication

 by R⁻¹ is simple because R upper triangular
 Formation of orthogonal Q known as modified Gram-Schmidt process
 Colorado State Formation 2008

Singular Value Decomposition

- Based on the idea of transforming the A matrix of Ax = b into A = USV^T, where
 U and V are orthogonal matrices (U⁻¹ = U^T and V⁻¹ = V^T) and S is a diagonal matrix
- Singular value decomposition (SVD) and the QR Method are also used in solving least squares problems where an experimental data are used to get the best fit to a theoretical model

California State University Northridge

• What do you want to do?

- Solve a problem
- Develop a general method
- To solve one problem (even several times) use Excel or Matlab
- To develop a general method get libraries from LAPACK, GAMS, or IMSL (Visual Numerics)

California State University Northridge 39

37

Conclusions

- Solving problems in linear algebra has a strong background and literature
- Much available software
- Be sure that you have sufficient precision to avoid round-off error and use pivoting
- Check matrix condition number if you suspect near linear dependence
- Matlab is versatile tool for matrix equations, eigenvalues and eigenvectors

40

California State University Northridge