
Numerical Methods in Linear Algebra
Part Two

September 25, 2017

ME 501A Seminar in Engineering
Analysis Page 1

Numerical Methods in Linear
Algebra, Part Two

Larry Caretto
Mechanical Engineering 501A

Seminar in Engineering
Analysis

September 25, 2017

2

Outline

• Review last class
• Pivoting strategies to reduce round-off

error in solutions
• Gauss-Jordan for matrix inverses
• The LU method
• Numerical analysis software

3

Review last class

• Finite representation of numbers in
binary computer gives round-off error

• Machine epsilon is measure of precision
of floating point representation
– 1 +  = 1 below “machine epsilon”

– epsilon is usually 1.19x10-7 for single and
2.22x10-16 for double precision

• Round-off error growth in calculations
called error propagation

4

Review Error Propagation

• Addition and subtraction errors

xy

yxxy
rel

~~


yx
yx

rel ~~
 

• Multiplication
and division
errors

• Approximate result for
both multiply/divide:

   
yxyxyx

yxyx yxyx
rel ~~

~~



















5

Review Matrix Vector Norm

• Both Ax and x are matrices

• Can use any matrix norm to
compute ||A||

x

Ax
A

x
max

• Choosing infinity
norm as vector norm
gives row sum

• Choosing one norm
as vector norm gives
column sum





n

i
ij

j
a

1
1

maxA







n

j
ij

i
a

1

maxA

6

Review Problem Condition
• In ill-conditioned problems small relative

changes in data cause large relative
changes in results

• Matrix condition number (A) = ||A|| ||A-1||
of 100 or above indicate ill-conditioning

A

δA
A

x

δx
)( b

δb
A

x

δx
)(

b

xAb
A

b

r
A

x

xx ~
)()(

~ 





Numerical Methods in Linear Algebra
Part Two

September 25, 2017

ME 501A Seminar in Engineering
Analysis Page 2

7

Review Gauss Elimination

• Use each row from row 1 to row n-1 as
the “pivot” row
– Work on each row below the pivot row

• Multiply pivot row by arow,pivot/apivot,pivot

• Subtract result from row r to make arow,pivot = 0
• Operation requires subtraction for each column of

A right of pivot column and for b

– Repeat for each row below pivot

• Repeat for rows 1 to n-1 as pivot rows
• Use back substitution for x values

8

Review Round-off Error Example

• Same set of equations solved with
original order and reverse order



















































0002.1

1

300003.0

11

1

0002.1

11

300003.0

x

y

y

x























































 9999.0

1

9997.20

11

0003.0

0002.1
1

0002.1

99990

300003.0

x

y

y

x

• Original order solution less accurate by
about four significant figures

9

Review Round-off Conclusions

• Showed that order of equations was
important factor in round-off error

• Problems caused by small pivot
elements (diagonal element on
pivot row)

• Found large loss of significant
figures with original order but no
error when order was reversed

• Want to use this idea in algorithms
for reducing round-off error

10

Zero and Small Pivots

• Gauss elimination may give zero for the
pivot element in one row, but swapping
equations can give a nonzero pivot

• Always check for a small number not zero

• Use scaled equations so maximum
absolute element in each row is one

• Find row with maximum (scaled) element
in the pivot column and then swap

11

Finding Inverse Matrices

• For B = A-1, AB = I, gives

















































































1000

0100

0010

0001

321

3333231

2232221

1131211

321

3333231

2232221

1131211





































nnnnn

n

n

n

nnnnn

n

n

n

bbbb

bbbb

bbbb

bbbb

aaaa

aaaa

aaaa

aaaa

• This requires n solutions of n equations in
n unknowns (one solution for each b
column)

12

Finding Inverse Matrices II

• E. g., for the second column of B we solve

















































































0

0

1

0

2

32

22

12

321

3333231

2232221

1131211





















nnnnnn

n

n

n

b

b

b

b

aaaa

aaaa

aaaa

aaaa

• We can solve for all n columns of the
inverse matrix at one time

Numerical Methods in Linear Algebra
Part Two

September 25, 2017

ME 501A Seminar in Engineering
Analysis Page 3

13

Finding Inverse Matrices III

• Gauss-Jordan subtracts pivot row from all
rows above and below to give final result
shown below

















































































2

32

22

12

2

32

22

12

1000

0100

0010

0001

nnb

b

b

b

























 • Diagonal form
gives solutions
by inspection:
b12 = 12, b22 =
22, b32 = 32,
…, bn2 = n2,

14

Gauss-Jordan Matrix Inversion

• Start with augmented A matrix



























1000

0100

0010

0001

321

3333231

2232221

1131211

























nnnnn

n

n

n

aaaa

aaaa

aaaa

aaaa

• Gauss elimination with diagonals set to 1
and pivot row subtracted from all rows

15

Gauss-Jordan Result

• Augmented matrix at end of process



























nnnnn

n

n

n

bbbb

bbbb

bbbb

bbbb

























321

3333231

2232221

1131211

1000

0100

0010

0001

• Inverse is read from augmented (right-
hand) part of matrix

16

Gauss-Jordan Pseudocode

Loop over all rows as pivots (1 to N)

Find the row with the maximum
(scaled) element in the pivot
column and swap it with the pivot
current pivot row

Divide all elements the pivot row
by a[pivot,pivot]

Loop over all rows, subtracting the
pivot row times a[row,pivot] from
each row (1 to N except pivot)

17

Gauss-Jordan Example
• Solve the set

of equations
on the right

)(14837

)(13923
)(342642

321

321

321

iiixxx

iixxx
ixxx





• Divide
equation (i)
by a11 = 2

)(14837

)(13923
)(171321

321

321

321

iiixxx

iixxx
ixxx





• Subtract –3 times (i) from equation (ii) and
7 times (i) from (iii) to replace (ii) and (iii)

18

Gauss-Jordan Example II

           )17(313)13(39)2(32133 321  xxx

           )17(714)13(78)2(73177 321  xxx

• Result from
first set of
operations)(13399170

)(383040
)(171321

321

321

321

iiixxx

iixxx
ixxx





• Divide
equation (ii)
by a22 = -4)(13399170

)(5.95.710
)(171321

321

321

321

iiixxx

iixxx
ixxx





Numerical Methods in Linear Algebra
Part Two

September 25, 2017

ME 501A Seminar in Engineering
Analysis Page 4

19

Gauss-Jordan Example III

           )5.9(217)5.7(213)1(22021 321  xxx

           )5.9(17133)5.7(1799)1(17171170 321  xxx

• Result from
second set of
operations

)(5.285.2800

)(5.95.710
)(2201

321

321

321

iiixxx

iixxx
ixxx





• Subtract –2 times (ii) from equation (i) and
17 times (ii) from (iii) to replace (i) and (iii)

20

Gauss-Jordan Example IV

           )1(22)0(22)0(20021 321  xxx

           )1(5.75.9)1(5.75.7)0(5.7105.70 321  xxx

• Divide
equation (iii)
by a33 = -28.5)(1100

)(5.95.710
)(2201

321

321

321

iiixxx

iixxx
ixxx





• Subtract 2 times (iii) from equation (i) and
7.5 times (iii) from (ii) to replace (i) and (ii)

21

Gauss-Jordan Example V

• Results after
using row iii
as pivot row)(1100

)(2010
)(0001

321

321

321

iiixxx

iixxx
ixxx





• Solutions are seen to be x1 = 0, x2 = 2,
and x3 = 1

• No back substitution required

• Not generally used because more compu-
tations required (compared to standard
Gauss elimination)

22

Gauss-Jordan Inverse Example

• Use previous matrix to get inverse

 




















100837

010923

0012642

,IA





















105.399170

015.13040

005.01321
• After first

row as
pivot row

23

Gauss-Jordan Inverse Example II





















125.4875.25.2800

025.0375.05.710

05.025.0201• After sec-
ond row as
pivot row





















0350877.0149123.0100877.0100

263168.0868421.0381579.0010

0701754.0201754.00482456.0001

• Final step (row 3 as pivot) shows [I,A-1]

24

LU Methods

• Based on factoring original A matrix into
a product LU = A

• L is lower triangular
• U is upper triangular
• Different ways to do this (Doolittle,

Crout and Cholesky)
• Can get L and U without knowing b
• Useful when several b solutions (for

same A) required at different times

Numerical Methods in Linear Algebra
Part Two

September 25, 2017

ME 501A Seminar in Engineering
Analysis Page 5

Crout Algorithm

• The L and U elements are stored in the
space used for the A elements
– In Crout algorithm, the lower triangular

matrix, L, has values of 1 on the principal
diagonal which does not have to be stored

– All upper triangular matrix elements, uij,
including diagonal elements are stored in
place of the upper a elements

– This storage pattern for the L and U
matrices is shown on the next slide

25 26

A = LU

LU

A















































































nn

n

n

n

nnn

nnnnn

n

n

n

u

uu

uuu

uuuu

all

ll

l

aaaa

aaaa

aaaa

aaaa





































000

00

0

1

01

001

0001

333

22322

1131211

321

3231

21

321

3333231

2232221

1131211

27

How do we get L and U?

• Conventional matrix
multiplication





n

k
kjikij ula

1

• L and U structure give effective upper
limits less than n

jjnjjj

n

k
jkjkj uuuuuulula 1132

1
11111)1()0()0()0(





11113
1

211111)0()0()0(ullllulula iii

n

k
iikiki  




• These two equations give u1j = a1j and
li1 = ai1/u11 (first u row and l column)

111 l

28

General L and U Equations

• Use the following equations to compute
components of L and U matrices (lmm = 1)

  




zeroisntomkfromulula mjmm

m

k
kjmkmj 1

1

1

nmjulau
m

k
kjmkmjmj ,,

1

1

 




nmi
u

ula

l
mm

m

k
kmikim

im ,,1

1

1 








29

Solving Ax = b

• Define y such that y = Ux

• b = Ax = LUx = Ly = b

• So we have to solve the following for y











































































nnnnn b

b

b

b

y

y

y

y

lll

ll

l





















3

2

1

3

2

1

321

3231

21

1

01

001

0001

30

Solving Ax = b Continued

• We find y from y = Ux (Ly = b)

• y1 = b1, y2 = b2 – l21y1, etc.

niylby
i

k
kikii ,2,1

1

1

 




• Solution for yi requires only yk with k < i

• Once y is known, we have to solve y =
Ux for x

Numerical Methods in Linear Algebra
Part Two

September 25, 2017

ME 501A Seminar in Engineering
Analysis Page 6

31

Solving Ax = b Concluded

• Solving y = Ux is just back substitution











































































nnnn

n

n

n

y

y

y

y

x

x

x

x

u

uu

uuu

uuuu





















3

2

1

3

2

1

333

22322

1131211

000

00

0

32

LU with Pivoting

• Can do usual pivoting in LU method by
selecting maximum umm for division

• How do we consider row swaps when
we have a new b vector?

• Maintain one-dimension integer array to
keep track of row swaps

• See notes for details

• Library programs call for this array

Tridiagonal Systems

• Such systems have the following
general form: Aixi-1 + Bixi + Cixi+1 = Di

• Occur in special cases such as ordinary
differential equation boundary value
problems and fitting cubic spline
polynomials

• Simplified solution procedure, Thomas
Algorithm, which is really Gaussian
Elimination for this simple system

33

Thomas Algorithm*
• Loop over all rows from k = 1 to k = N-2;

for each k value compute Bk+1 and Dk+1

• Compute

• Loop over all rows from k = N – 1 to k =
2 in reverse order. For each row, k,
compute xk from the following equation

34

kkkkkkkkkk BDADDBCABB 111111  

NNN BDx 

k

kkk
k B

xCD
x 1


*Also called

TriDiagonal Matrix
Algorithm (TDMA)

Iterative Methods

• Used for large sparse systems of
simultaneous linear equations
– May have thousands of equations, but any

one equation will have only a few (five to
seven) nonzero coefficients

– Such systems are associated with
numerical solution of partial differential
equations

– Covered in ME 501B numerical solution of
partial differential equations discussion

35

QR Method

• Based on the idea of transforming the A
matrix of Ax = b into A = QR, where
– Q is an orthogonal matrix (Q-1 = QT), and

– R is an upper triangular matrix

• Then have A-1 = (QR)-1 = R-1Q-1 = R-1QT

– b = A-1x = R-1QTx where premultiplication
by R-1 is simple because R upper triangular

• Formation of orthogonal Q known as
modified Gram-Schmidt process

36

Numerical Methods in Linear Algebra
Part Two

September 25, 2017

ME 501A Seminar in Engineering
Analysis Page 7

Singular Value Decomposition

• Based on the idea of transforming the A
matrix of Ax = b into A = USVT, where
– U and V are orthogonal matrices (U-1 = UT

and V-1 = VT) and S is a diagonal matrix

• Singular value decomposition (SVD)
and the QR Method are also used in
solving least squares problems where
an experimental data are used to get
the best fit to a theoretical model

37 38

Software

• Excel has array functions minverse,
mmult, and mdeterm

• Matlab has many functions for matrices,
including eigenvectors and eigenvalues

• Linear Algebra PACKage (LAPACK) is
available on many computers

• Visual numerics (IMSL library)

• http:/gams.nist.gov/

39

Software Issues

• What do you want to do?
– Solve a problem

– Develop a general method

• To solve one problem (even several
times) use Excel or Matlab

• To develop a general method get
libraries from LAPACK, GAMS, or IMSL
(Visual Numerics)

40

Conclusions

• Solving problems in linear algebra has a
strong background and literature

• Much available software
• Be sure that you have sufficient precision

to avoid round-off error and use pivoting
• Check matrix condition number if you

suspect near linear dependence
• Matlab is versatile tool for matrix

equations, eigenvalues and eigenvectors

