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Outline

* Review last class

 Pivoting strategies to reduce round-off
error in solutions

e Gauss-Jordan for matrix inverses
e The LU method
¢ Numerical analysis software

Review last class

« Finite representation of numbers in
binary computer gives round-off error

» Machine epsilon is measure of precision
of floating point representation
—1 + ¢ = 1 below “machine epsilon”
— epsilon is usually 1.19x107 for single and

2.22x1016 for double precision

» Round-off error growth in calculations

called error propagation
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Review Error Propagation

« Addition and subtraction errors
_(xty)-(X£y)_&cte &

rel —

&y

+
Xty Xty Xzxy
« Multiplication

and division =%~

errors Xy

; &y 6‘y

* Approximate result for &, =~ ~ X4 2
both multiply/divide: X y
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Review Matrix Vector Norm

* Both Ax and x are matrices

« Can use any matrix norm to
compute ||A]|

Ial= wuuq

 Choosing infinity
norm as vector norm A = maXZ‘a
gives row sum

« Choosing one norm
as vector norm gives A, = maxZ‘a
column sum

Nl)l‘tlll‘l(lgt

u‘

I]‘

Review Problem Condition

¢ In ill-conditioned problems small relative
changes in data cause large relative
changes in results

 Matrix condition number k(A) = ||A]| ||AY]
of 100 or above indicate ill-conditioning

=5 oay Il ay P A
x(A) 7 =x(A)
Il o]
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Review Gauss Elimination

» Use each row from row 1 to row n-1 as
the “pivot” row

— Work on each row below the pivot row
* Multlply inOt row by arow,p\vo!/ap\vol,pivot
* Subtract result from row r to make aq,pivot = 0
« Operation requires subtraction for each column of
A right of pivot column and for b

— Repeat for each row below pivot
» Repeat for rows 1 to n-1 as pivot rows
» Use back substitution for x values

Californin State [niversity
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[

Review Round-off Error Example

« Same set of equations solved with
original order and reverse order

Bl e B P H

1.0002
000003 3 }m{l_mooz} {1 1 }Hz[ 1
0 -9999)y 0.0003 0 29997 | x| |0.9999
« Original order solution less accurate by
about four significant figures
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Review Round-off Conclusions

» Showed that order of equations was
important factor in round-off error

» Problems caused by small pivot
elements (diagonal element on
pivot row)

» Found large loss of significant
figures with original order but no
error when order was reversed

» Want to use this idea in algorithms

_for reducing round-off error

Northridge

Zero and Small Pivots

» Gauss elimination may give zero for the
pivot element in one row, but swapping
equations can give a nonzero pivot

 Always check for a small number not zero

 Use scaled equations so maximum
absolute element in each row is one

* Find row with maximum (scaled) element
in the pivot column and then swap

Calrforrsi Sate University 10
Northridge

Finding Inverse Matrices

e ForB =A1, AB =1, gives

8y B, 8y o a, |by b, by oo b, 00 - -
Ay By By o A by by by e e b,, 1.0 oo oo
a, A, 8y - o a, by by, by - - b,, 0 1 oo o
Ay &y By Ay bn1 bn 2 bn3 """ bnn 000 - -

« This requires n solutions of n equations in
n unknowns (one solution for each b
column)

.’n".|N:|I|-|‘:||nY»'.-
Northridge

Finding Inverse Matrices |l

* E. g., for the second column of B we solve

&y A A3 o A, b12 0
8 8y Ay oo 3 bzz 1
Ay 8y 8y o A, b32 _ 0
Ay &y Ay A an 0

» We can solve for all n columns of the
inverse matrix at one time

12
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Finding Inverse Matrices Il

shown below

Californin State [niversity
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» Gauss-Jordan subtracts pivot row from all
rows above and below to give final result

100 - - 0w, [B.] < Diagonal form
010 ~ - 0by | | A gives solutions
00 1 - .. olb, | |4, by inspection:
RS R I D1, = Bro by =
o R : B22: b3y = B,
00 0 - - 1] b, B <oy Do = Pnos

13

Gauss-Jordan Matrix Inversion

 Start with augmented A matrix

8y 8, &y o a,1 00 - - 0
8y Bp By vt a,,0 1 0 - - 0
8y 8y 8y o 3,0 0 1 - - 0
a, a, a5 - a, 00 0 - - 1

» Gauss elimination with diagonals setto 1
and pivot row subtracted from all rows

14
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Gauss-Jordan Result

100 - - 0b, b, b, - -
01 0 - - Ob, b, by - -

00 0 - - 1b,

hand) part of matrix

Californin State [ niversity
Northridge

» Augmented matrix at end of process

bn bn nn
« Inverse is read fromlaugzmerited (right- -

15

Gauss-Jordan Pseudocode

Loop over all rows as pivots (1 to N)

Find the row with the maximum
(scaled) element in the pivot
column and swap it with the pivot
current pivot row

Divide all elements the pivot row

by a[pivot,pivot]

Loop over all rows, subtracting the
pivot row times a[row,pivot] from
each row (1 to N except pivot)

Calrforrsi Sate University 16
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Gauss-Jordan Example

» Solve the set

Californin State [ niversity
Northridge

2X, —4X, — 26X, =34 (i)
of equations —3x, +2x,+ 9x,= 13 (ii)

on the right TX, +3%,+ 8%, = 14 (iii)
* Divide  1x —2x,-13x, =-17 (i)
equation (i) 3%, +2X,+ 9%, = 13(ii)
by a;; =2

7, +3%,+ 8%, = 14(iii)

» Subtract -3 times (i) from equation (ii) and
7 times (i) from (iii) to replace (ii) and (iii)

17

Gauss-Jordan Example Il

[-3- (=3 +[2-(=3)-2)]x, +[0-(-3)(-13) ]x, = [13~(~3)(-17)]
[7 - (7 + 3= (7)-2) ]x, + [8- (7)(-13)x, = [14 - (7)(-17)]
* Result from 1x, — 2%, —13x, = -17 (i)

first set of 0x, —4x, —30x, = 38 (ii)
operations 0x, +17x, +99x, =133 (iii)

* Divide 1x, — 2%, —13%, =17 (i)
equation (ii) 0x, +1x, + 7.5, = 9.5 (ii)
by ay, = -4 0x, +17x, +99x, =133 (iii)
.’:---_|N:|I|-I‘:||m»'.- 18
Northridge
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Gauss-Jordan Example 11l

 Subtract -2 times (ii) from equation (i) and
17 times (ii) from (iii) to replace (i) and (iii)

- (-2)okx +[-2-(-2)Q)x, + 13~ (-2)7 5)}, =[-17-(-2)(2.5)]
[0-@7lx, +[27 - @7)D)]x, +[99 - (17)(7.5)]x, = [133-(17)(9.5)]

* Result from I +0x%,+ 2X3= 2 (i)
second setof Ox + 1x,+ 7.5x;= 9.5 (ii)

operatlonS Ox1+OX2 —28_5X3 =-285 (|||)

19

Gauss-Jordan Example IV

 Divide 1%, +0X, +2X%; =2 (i)__
equation (iii) 0x, +1x, + 7.5%; = 9.5 (ii)
by ag; =-28.5 0x, +0x, +1x, =1(iii)

« Subtract 2 times (iii) from equation (i) and
7.5 times (iii) from (ii) to replace (i) and (ii)

[1- (20}, +[0-(2)O)]x, +[2-(2)O) ]x, =[2-(2))]
[0- (7 5)0x, +[L-(7.5)-0)x, +[7.5- (7 5)D)]x, = [0.5- (7 5)w)]

20
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Gauss-Jordan Example V

 Results after
using row iii
as pivot row

1x, +0x, +0x, =0 (i)

0x, +1x, +0x, = 2 (ii)

0x, +0x, +1x, =1(iii)

* Solutions are seen to be x; = 0, x, = 2,
and x; =1

» No back substitution required

» Not generally used because more compu-
tations required (compared to standard
_Gauss elimination)

TR Sl Lnpersity 2
Northridge

Gauss-Jordan Inverse Example

« Use previous matrix to get inverse
2 -4 -26 100

Gauss-Jordan Inverse Example Il

« Aftersec- [1 0 2 -025 -05 0]
ondrowas|o 1 75 _0375 —025 0

prOtrOW
0 0 -285 2875 425 1

* Final step (row 3 as pivot) shows [I,A1]
1 0 0 -0.0482456 -0.201754 0.0701754 |
0 1 0 0.381579 0.868421  0.263168

0 0 1 -0.100877 -0.149123 -0.0350877 |

23

Californin State [ niversity
Northridge

ME 501A Seminar in Engineering
Analysis

[Ad]=|-3 2 9 0 1 0
7 3 8 001
* After first -2 -13.05 00
row as 0 -4 -30 15 1 0
pivot row 0 17 99 -35 0 1
Norihridge »
LU Methods

Based on factoring original A matrix into
a product LU = A

L is lower triangular
U is upper triangular

« Different ways to do this (Doolittle,
Crout and Cholesky)

e Can get L and U without knowing b

Useful when several b solutions (for
same A) required at different times

24
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Crout Algorithm

* The L and U elements are stored in the

space used for the A elements

— In Crout algorithm, the lower triangular
matrix, L, has values of 1 on the principal
diagonal which does not have to be stored

— All upper triangular matrix elements, u,
including diagonal elements are stored in
place of the upper a elements

— This storage pattern for the L and U
matrices is shown on the next slide

25
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A Ay Ay o a,

A Ayp By oo a,

Ay, Ay, 8y e a,

O e e an | _

Ay Ay Ay o a,
1 0 0 -« - Offuy U, Uy -+ - u,,
ly 10 - - 0[] 0 Uy Uy oo - u,
ly 1, 1 - e 0|0 0 uy - - U, LU
Iy 1o @y - o 10 0 0 - - u

26
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How do we get L and U?

n
« Conventional matrix ajj = Z|ikukj
multiplication

» L and U structure give effective upper

limits less than n -
11

lekukj =1, + (0)uy; + (O)uy; +-++(0) Uy = (uy; =y

ay = Zlikukl = Ity + 15 (0) +153(0) + -+ + 1, (0) = ljytyy
=

* These two equations give uy; = a;; and
Iy = a;/uy, (first u row and | column)

]‘Jnrthrl(lgt

27

m-1
amj :zlmkukj +Imm
k=1

General L and U Equations

Uy + 2 (fromk =m+1tonis zero)

* Use the following equations to compute
components of L and U matrices (I, = 1)

zlmkukj j=m,...,n

Ajm — Zlikukm
=— k1 i=m+1...,n

|.
m
umm 28

Calbiforni State University
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Solving AXx = b

 Define y such thaty = Ux
* b=Ax=LUx=Ly=b
» So we have to solve the following for y

1 0 0 - - 0]y, by
by 10 - - 0| |y2| |b;

29

Cabiforni State Unhersity
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Solving Ax = b Continued

 We findy fromy = Ux (Ly = b)
* Y1 =Dby Y, = by~ ete.

i-1
Vi =by — >l Vi i=12,...n
=]

* Solution for y; requires only y, with k <

* Oncey is known, we have to solve y =
Ux for x

30
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» Solving y = Ux is just back substitution

LU with Pivoting

Uppg U Uz oo e U | [ X Y1
0 Uy Uy o o Uy | [ X Yo
0 0 ‘ug -+ - Uzp|[Xsg| | Y3
_0 0 0 unn_ _Xn_ _yn_
Northridge 31

e Can do usual pivoting in LU method by
selecting maximum u,,,, for division

* How do we consider row swaps when
we have a new b vector?

< Maintain one-dimension integer array to
keep track of row swaps

« See notes for details
« Library programs call for this array

Calrforrsi Sate Unfversity 32
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Tridiagonal Systems

» Such systems have the following
general form: Ax;; + Bx; + Cix;,; = D;

» Occur in special cases such as ordinary
differential equation boundary value
problems and fitting cubic spline
polynomials

 Simplified solution procedure, Thomas
Algorithm, which is really Gaussian
Elimination for this simple system

Californin State [ niversity 33
Northridge

Thomas Algorithm*

« Loop over all rows from k = 1 to k = N-2;
for each k value compute B,,; and D,
By < Biii =~ AciCi/Bi Dyt ¢ Dy — AcuDy /By

+ Compute X =Dy/By

» Loop over all rows fromk=N-1tok =

2 in reverse order. For each row, k,
compute x, from the following equation

Iterative Methods

» Used for large sparse systems of

simultaneous linear equations

— May have thousands of equations, but any
one equation will have only a few (five to
seven) nonzero coefficients

— Such systems are associated with
numerical solution of partial differential
equations

— Covered in ME 501B numerical solution of
partial differential equations discussion

Californin State [ niversity 35
Northridge

*
. - D, —C\ X . .AIso called .
k= B TriDiagonal Matrix
“ Algorithm (TDMA)
Northridge
QR Method

ME 501A Seminar in Engineering

« Based on the idea of transforming the A
matrix of Ax = b into A = QR, where
— Q is an orthogonal matrix (Q* = QT), and
— R is an upper triangular matrix
* Then have Al = (QR)! = R1Q! = R1QT
—b = Alx = R1Q™x where premultiplication
by R is simple because R upper triangular
» Formation of orthogonal Q known as
modified Gram-Schmidt process

Calrforrsi Sate University 36
Northridge
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Singular Value Decomposition

Software

the best fit to a theoretical model

Cabiforrsin State Lnfersity
Northridge

» Based on the idea of transforming the A
matrix of Ax = b into A = USVT, where
— U and V are orthogonal matrices (U1 = UT

and V-1 =VT) and S is a diagonal matrix
 Singular value decomposition (SVD)
and the QR Method are also used in

solving least squares problems where
an experimental data are used to get

» Excel has array functions minverse,
mmult, and mdeterm

« Matlab has many functions for matrices,
including eigenvectors and eigenvalues

« Linear Algebra PACKage (LAPACK) is
available on many computers

* Visual numerics (IMSL library)
« http:/gams.nist.gov/

California State Linhversity 38
Northridge

Software Issues

Conclusions

* What do you want to do?
— Solve a problem
— Develop a general method

times) use Excel or Matlab
» To develop a general method get

(Visual Numerics)

Cabiforrsin State Lnfersity
Northridge

* To solve one problem (even several

libraries from LAPACK, GAMS, or IMSL

ME 501A Seminar in Engineering
Analysis

¢ Solving problems in linear algebra has a
strong background and literature

* Much available software

* Be sure that you have sufficient precision
to avoid round-off error and use pivoting

¢ Check matrix condition number if you
suspect near linear dependence

» Matlab is versatile tool for matrix
equations, eigenvalues and eigenvectors

Calrforrsi Sate University 40
Northridge
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